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ABSTRACT: There is a growing demand for the use of
machine learning (ML) to derive fast-to-evaluate surrogate
models of materials properties. In recent years, a broad array of
materials property databases have emerged as part of a digital
transformation of materials science. However, recent techno-
logical advances in ML are not fully exploited because of the
insufficient volume and diversity of materials data. An ML
framework called “transfer learning” has considerable potential
to overcome the problem of limited amounts of materials data.
Transfer learning relies on the concept that various property
types, such as physical, chemical, electronic, thermodynamic,
and mechanical properties, are physically interrelated. For a given target property to be predicted from a limited supply of
training data, models of related proxy properties are pretrained using sufficient data; these models capture common features
relevant to the target task. Repurposing of such machine-acquired features on the target task yields outstanding prediction
performance even with exceedingly small data sets, as if highly experienced human experts can make rational inferences even for
considerably less experienced tasks. In this study, to facilitate widespread use of transfer learning, we develop a pretrained model
library called XenonPy.MDL. In this first release, the library comprises more than 140 000 pretrained models for various
properties of small molecules, polymers, and inorganic crystalline materials. Along with these pretrained models, we describe
some outstanding successes of transfer learning in different scenarios such as building models with only dozens of materials data,
increasing the ability of extrapolative prediction through a strategic model transfer, and so on. Remarkably, transfer learning has
autonomously identified rather nontrivial transferability across different properties transcending the different disciplines of
materials science; for example, our analysis has revealed underlying bridges between small molecules and polymers and between
organic and inorganic chemistry.

■ INTRODUCTION

The ability of machine learning (ML) models, which are
trained on massive amounts of data, to perform intellectually
demanding tasks across various fields has reached or even
surpassed that of humans.1−4 As such, ML has received
considerable attention as a key driver to the next frontier of
materials science, enabling us to reap substantial time and cost
savings in the development of new materials.5 In particular,
high-throughput screening (HTS) across extensive libraries of
candidate materials, where such libraries typically contain
millions or even billions of virtually created candidates, is a
promising application in this context. HTS relies on a fast-to-
evaluate surrogate ML model that describes physical, chemical,
electronic, thermodynamic, or mechanical properties as a
function of material structures. To date, ML has mostly been
applied successfully in materials science via such simple

workflows, e.g., in HTS-assisted discovery of new materials
for organic light-emitting diodes6 and the identification of new
ligands for nickel catalysis.7 Recently, a variety of materials
property databases have emerged; these databases are
developing continuously toward the accelerated discovery of
innovative materials based on data-centric workflows. How-
ever, at present, the volume and diversity of the available data
are insufficient for the exploitation of the full potential of ML.
This problem of insufficient data will remain unresolved for a
while, as the development of materials database is rather time-
consuming and resource-intensive. Also, there is no clear
incentive for broader data sharing and open-access movements
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among the various stakeholders in this field in industry and
academia.
An ML framework called transfer learning has considerable

potential to overcome the problem of limited amounts of
materials data. Transfer learning is an increasingly popular ML
framework, covering a broad range of methodologies in which
a model trained on one task is repurposed for another related
task.8,9 Among the various types of transfer learning, inductive
transfer learning using artificial neural networks merits
attention. Transfer learning has much less visibility in materials
science than in other fields; however, a small number of studies
on this topic have recently been published.10−18 In general,
transfer learning is required when there is a limited supply of
training data; however, many other promising applications to
materials science exist, as described later. For a target property
to be predicted based on a limited supply of data, a set of
pretrained neural networks on its proxy properties is first
obtained, where the given data are sufficiently large for training
to be performed. The pretrained models autonomously acquire
common features relevant to the proxy properties, which
appear somewhere in the hidden layers. The features learned
by solving the related tasks are partially transferable as input
features for a model of the target task, if those properties are
physically related. In this paper, it is demonstrated that
adapting such machine-acquired features to a new task can
bring a surprisingly outstanding prediction ability as highly
experienced human experts can make rational inferences even
on considerably less experienced tasks. There might be no
materials properties as being completely independent, and
every property might bear some dependencies to others
directly or indirectly. This fact will create the enormous
potential of transfer learning in materials science.
To facilitate the widespread use of transfer learning, we have

developed a comprehensive library of pretrained models, called
XenonPy.MDL,19 by feeding diverse sets of materials property
data into neural networks or some other types of models such
as the random forest model. In the current release (version
0.1.0), this ever-growing library contains more than 140 000
models for physical, chemical, electronic, thermodynamic, and
mechanical properties of small organic molecules, polymers,
and inorganic crystalline materials (15, 18, or 12 properties for
each). The trained models are distributed as the MXNet20 (R)
and/or PyTorch21 (Python) model objects. The distributed

application programming interface (API) allows users to query
the XenonPy.MDL database.
We describe the outstanding successes of transfer learning in

different scenarios. In some case studies, surprisingly well-
performing models were achieved even though only a few data
points for polymeric properties were supplied. In addition, the
enhancement of the extrapolative prediction performance
through a strategic model transfer is demonstrated. Remark-
ably, transfer learning has autonomously identified rather
nontrivial transferability across different properties transcend-
ing the different disciplines of materials science, for example,
from small molecules to polymers and from inorganic to
organic chemistry.

■ METHODS
Neural Transfer Learning. In this study, we focused on

specific types of transfer learning using neural networks. The
task to be addressed is to learn a neural network Yt = f t(S) that
predicts a target property Yt for any given material S with a
considerably small data set of size nt

= { | = }Y S i n, 1, ...,t t i t i t, ,

where {Yt,i, St,i} denotes the ith training instance. Transfer
learning provides several ways to break the barrier of limited
data in which models trained on different source property Ys
with a given abundant data set s are reused and transferred to
the model in the target task.
There are two commonly applied procedures for the neural

transfer learning, the frozen featurizer and fine-tuning
techniques, which are briefly described below (see Yosinski
et al.22 for example):

• Frozen featurizer. Solving a source task on a proxy
property to the target, we obtain a pretrained neural
network Ys = fs(S) with L layers. In general, the function
is represented as a Lth-order composite function fs(S) =
(gL◦gL−1...◦g1)(S) tandemly arranged from the input g1
to the output layer gL. Earlier or shallower layers tend to
acquire general features to form the basis of the material
description, and only the last one or two layers are
responsible for summarizing specific features for
prediction of a source property. We retain the shallower
layers to be frozen as a feature extractor, ϕ(S) =

Figure 1. Neural transfer learning with frozen featurizers. In this example, a fully connected pyramid neural network is first trained using training
instances for the monomeric CV. A subnetwork other than the output layer is used as a feature extractor and is repurposed on a model of the
polymeric CP.
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Table 1. Summary of Models Trained in This Studya

material
type database property

model
type

model
parameters

no. of
models

best model
correlation

no. of
descriptors

descriptor
type

organic PoLyInfo (polymer) glass transition temperature RF-R RF setup 1 1,000 0.950 max 500* rcdk-all
GB-R GB setup 1,000 0.950 max 500* rcdk-all
EN-R EN setup 1,000 0.920 max 500* rcdk-all
NN-R NN setup 1 1,000 0.950 max

400−600#
rcdk-all

NN-Py NN setup 2 500 0.955 2,048 RDKit-5
density NN-R NN setup 1 1,000 0.910 max

400−600#
rcdk-all

NN-Py NN setup 2 500 0.859 2,048 RDKit-5
viscosity NN-R NN setup 1 1,000 0.890 max

400−600#
rcdk-all

NN-Py NN setup 2 500 0.613 2,048 RDKit-5
melting temperature NN-R NN setup 1 1,000 0.880 max

400−600#
rcdk-all

NN-Py NN setup 2 500 0.885 2,048 RDKit-5
heat capacity (const
pressure)

NN-R TL setup 1 25,000 0.992 max
400−600#

rcdk-all

thermal conductivity NN-R TL setup 1 25,000 1.000 max
400−600#

rcdk-all

QM9 (small
molecule)

heat capacity at constant
volume

NN-R NN setup 1 ∼500 0.900 max
400−600#

rcdk-all

LUMO NN-R NN setup 1 ∼500 0.950 max
400−600#

rcdk-all

HOMO−LUMO gap NN-R NN setup 1 ∼500 0.940 max
400−600#

rcdk-all

zero point vibrational energy NN-R NN setup 1 ∼500 0.940 max
400−600#

rcdk-all

internal energy at 0 K NN-R NN setup 1 ∼500 0.920 max
400−600#

rcdk-all

enthalpy at 298.15 K NN-R NN setup 1 ∼500 0.910 max
400−600#

rcdk-all

free energy at 298.15 K NN-R NN setup 1 ∼500 0.910 max
400−600#

rcdk-all

HOMO NN-R NN setup 1 ∼500 0.880 max
400−600#

rcdk-all

internal energy at 298.15 K NN-R NN setup 1 ∼500 0.880 max
400−600#

rcdk-all

isotropic polarizability NN-R NN setup 1 ∼500 0.870 max
400−600#

rcdk-all

electronic spatial extent NN-R NN setup 1 ∼500 0.800 max
400−600#

rcdk-all

dipole moment NN-R NN setup 1 ∼500 0.740 max
400−600#

rcdk-all

material
type database property

model
type

model
parameters

no. of
models

best model
correlation

no. of
descriptors

descriptor
type

Oorganic bandgap RF-R RF setup 2 1,000 0.964 max
1,500−3,000#

rcdk-all

NN-R NN setup 1 1,000 0.985 max 400−600# rcdk-all
NN-Py NN setup 2 500 0.983 2,048 RDKit-5

dielectric constant RF-R RF setup 2 1,000 0.965 max
1,500−3,000#

rcdk-all

NN-R NN setup 1 1,000 0.982 max 400−600# rcdk-all
NN-Py NN setup 2 500 0.958 2,048 RDKit-5

ionic dielectric constant RF-R RF setup 2 1,000 0.898 max
1,500−3,000#

rcdk-all

NN-R NN setup 1 1,000 0.934 max 400−600# rcdk-all
electronic dielectric
constant

RF-R RF setup 2 1,000 0.930 max
1,500−3,000#

rcdk-all

NN-R NN setup 1 1,000 0.947 max 400−600# rcdk-all
refractive index RF-R RF setup 2 1,000 0.953 max

1,500−3,000#
rcdk-all

NN-R NN setup 1 1,000 0.985 max 400−600# rcdk-all
NN-Py NN setup 2 500 0.981 2,048 RDKit-5

atomization energy RF-R RF setup 2 1,000 0.974 max
1,500−3,000#

rcdk-all

NN-R NN setup 1 1,000 0.986 max 400−600# rcdk-all
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Table 1. continued

material
type database property

model
type

model
parameters

no. of
models

best model
correlation

no. of
descriptors

descriptor
type

NN-Py NN setup 2 500 0.992 2,048 RDKit-5
polymer genome
(polymer)

density RF-R RF setup 2 1,000 0.961 max
1,500−3,000#

rcdk-all

NN-R NN setup 1 1,000 0.982 max 400−600# rcdk-all
NN-Py NN setup 2 500 0.989 2,048 RDKit-5

ionization energy RF-R RF setup 2 1,000 0.922 max
1,500−3,000#

rcdk-all

NN-R NN setup 1 1,000 0.962 max 400−600# rcdk-all
NN-Py NN setup 2 500 0.940 2,048 RDKit-5

electron affinity RF-R RF setup 2 1,000 0.955 max
1,500−3,000#

rcdk-all

NN-R NN setup 1 1,000 0.978 max 400−600# rcdk-all
NN-Py NN setup 2 500 0.987 2,048 RDKit-5

cohesive energy RF-R RF setup 2 1,000 0.839 max
1,500−3,000#

rcdk-all

NN-R NN setup 1 1,000 0.943 max 400−600# rcdk-all
melting temperature RF-R RF setup 2 1,000 0.920 max

1,500−3,000#
rcdk-all

NN-R NN setup 1 1,000 0.94 max 400−600# rcdk-all
glass transition
temperature

RF-R RF setup 2 1,000 0.937 max
1,500−3,000#

rcdk-all

NN-R NN setup 1 1,000 0.962 max 400−600# rcdk-all
NN-Py NN setup 2 500 0.931 2,048 RDKit-5

Hildebrand solubility
parameter

RF-R RF setup 2 1,000 0.951 max
1,500−3,000#

rcdk-all

NN-R NN setup 1 1,000 0.962 max 400−600# rcdk-all
NN-Py NN setup 2 500 0.879 2,048 RDKit-5

molar heat capacity RF-R RF setup 2 1,000 0.989 max
1,500−3,000#

rcdk-all

NN-R NN setup 1 1,000 0.991 max 400−600# rcdk-all
molar volume RF-R RF setup 2 1,000 0.965 max

1,500−3,000#
rcdk-all

NN-R NN setup 1 1,000 0.984 max 400−600# rcdk-all
PHYSPROP boiling point NN-R NN setup 1 1,000 0.782 max 400−600# rcdk-all
MD database solvation free energy NN-R NN setup 1 1,000 0.94 max 400−600# rcdk-all
Jean-Claude Bradley melting temperature NN-R NN setup 1 1,000 0.84 max 400−600# rcdk-all

material
type database property model type

model
parameters

no. of
models

best model
correlation

no. of
descriptors

descriptor
type

inorganic materials project volume NN-Py NN setup 3 3,600% 0.997 290/150 XenonPy
CGCNN-Py CNN setup 324 0.606 N/A N/A

formation energy per
atom

NN-Py NN setup 3 3,600% 0.997 290/150 XenonPy

CGCNN-Py CNN setup 324 0.977 N/A N/A
total energy per atom NN-Py NN setup 3 3,600% 0.996 290/150 XenonPy

CGCNN-Py CNN setup 324 0.963 N/A N/A
density NN-Py NN setup 3 3,600% 0.994 290/150 XenonPy

CGCNN-Py CNN setup 324 0.996 N/A N/A
Fermi energy NN-Py NN setup 3 3,600% 0.968 290/150 XenonPy

CGCNN-Py CNN setup 324 0.933 N/A N/A
magnetization NN-Py NN setup 3 3,600% 0.923 290/150 XenonPy

CGCNN-Py CNN setup 324 0.723 N/A N/A
bandgap NN-Py NN setup 3 3,600% 0.910 290/150 XenonPy

CGCNN-Py CNN setup 324 0.936 N/A N/A
Citrination data sets
id:152062

total dielectric constant NN-Py NN setup 3 3,600% 0.565 290/150 XenonPy

electronic dielectric
constant

NN-Py NN setup 3 3,600% 0.504 290/150 XenonPy

refractive index NN-Py NN setup 3 3,600% 0.762 290/150 XenonPy
Shiomi data scattering phase space NN-Py NN setup 3 ∼1,200 0.912 290/150 XenonPy

lattice thermal
conductivity

NN-Py NN setup 3 ∼1,200 0.998 290/150 XenonPy

NN-Py TL setup 2 ∼200 0.999 290 XenonPy
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(gK◦gK−1...◦g1)(S) with K < L, then repurposed ϕ(S) for
supervised learning of a different property, e.g., using the
random forest regression as Yt = f t(ϕ(S)) (Figure 1).

• Fine-tuning. In this approach, a pretrained model is used
as a starting point and fine-tuned to a target task using a
few given instances. In our implementation, the weights
on the last few layers of the pretrained model are
randomly initialized, while the learned parameters of the
remaining layers are used as initial values. All those
parameters are then retrained at a small learning rate,
which controls the weight updating on each gradient
descent iteration while preserving domain-invariant
knowledge.

The R and Python codes distributed at the XenonPy Web
site enable us to perform both types of transfer learning
seamlessly while utilizing the model library.
The prediction performance of a transferred model depends

on the choice of source properties, source data, and
architectures of the neural networks. Ideally, a resulting
prediction model should be extrapolative, i.e., showing high
predictability even in regions where less or no data are
available. In general, the prediction of any ordinal ML models
is interpolative. On the other hand, if a source model
pretrained using a massive amount of training data successfully
acquires generic features, which are applicable to a broad
region in the landscape of structure−property relationships, a
transferred target model trained with just a small data set could
be extrapolative as will be demonstrated later in some
applications. Besides, the more relevant the source and target
tasks are, the more efficiently the source model can adapt to
the target task.
Pretrained Model Library: XenonPy.MDL. To enjoy the

potential benefits of transfer learning, it would be helpful to
have a diverse candidate set of source models beforehand
instead of building pretrained models on-demand from scratch.
In conventional scenarios, we often lack a theoretical basis and
empirical laws to determine source properties related to a new
task. Besides, even on the same source property, pretrained
models having different network architectures often show

significant variations in transferability. Hence, we should take a
shotgun approach, i.e., to identify a model showing the best
transferability among a candidate pool of source models on a
trial-and-error basis.
Currently, the pretrained model library XenonPy.MDL

provides more than 140 000 pretrained neural networks,
which were developed using MXNet in R and PyTorch in
Python. In addition, the current release contains 16 000
pretrained random forests and 1000 gradient boosting models,
which were trained using the ranger and xgboost packages in R,
respectively. We classified the models into three categories
according to material types: small molecules, polymers, and
inorganic crystalline materials. A broad array of materials
properties is covered by the library: 15, 18, and 12 properties
for small molecules, organic polymers, and inorganic materials,
respectively. Furthermore, we produced a set of classification
models that discriminate 226 space groups (4 were neglected
from the total of 230 space groups due to lack of data) or 32
point groups of crystalline materials with given input chemical
compositions. The library also incorporates models success-
fully transferred from some of the source models.
For each source task considered in this study, we generated

∼1000 neural networks with randomly constructed network
structures, using different bootstrap data sets. As will be shown,
for the success of the shotgun transfer learning, it is important
to have diverse candidates of pretrained models or pretrained
features to be tested on the generalization capability on the
trial-and-error basis. To enhance the model diversity, we used
relatively small bootstrap data sets in the pretraining process. A
typical model had the form of a fully connected hierarchical
pyramid in which the number of layers was randomly selected
from {3,4,5,6}, and the number of neurons monotonically
decreased from the input layer to the output one. All neurons
in the hidden layers were activated by a rectified linear unit,
and a linear function was assigned to the output layers. Table 1
summarizes the trained models employed in this study and
provides a list of the source data sets, descriptors, model types,
and their prediction performances. Many of these models are
available online and can serve as benchmarks for further

Table 1. continued

aRF-R, GB-R, EN-R, and NN-R denote models obtained from the ranger package (random forest), xgboost package (gradient boosting), glmnet
package (elastic net), and MXNet package (neural network) in R, respectively. NN-Py and RF-Py denote neural networks trained with PyTorch
and random forest trained with scikit-learn in Python, respectively. CGCNN-Py denotes the crystal graph convolution neural network in PyTorch.
The hyperparameters of each model were randomly selected from fixed ranges. RF setup 1 indicates the number of trees (nTree) ∈ [100,800] and
the number of randomly chosen features (mTry) ∈ [20,100]. RF setup 2 denotes nTree ∈ [50,500] and mTry ∈ [50,500]. GB setup denotes the
learning rate (eta) ∈ [0.1,1], the maximum tree depth (max_depth) ∈ [3,10], and the maximum number of boosting iterations (nrounds) ∈
[50,200]. EN setup denotes the elastic net mixing parameter (alpha) ∈ [0,1] with the Gaussian-response-type family and randomly selected λ. NN
setup 1 denotes the number of epochs ∈ [3,000,4,000], the number of hidden layers ∈ [3,4]. Furthermore, the maximum number of nodes in the
first hidden layer equal to 400 and the number of nodes in the last layer ∈ [10,30]. NN setup 2 was the same as NN setup 1 except the maximum
number of nodes in the first hidden layer was 1640. NN setup 3 denotes the number of epochs ∈ [1000, 3000], the number of hidden layers ∈
[3,6], with the maximum number of nodes in the first hidden layer given by 348 and the minimum number of nodes in the last layer given by 5. TL
setup 1 denotes the use of the last hidden layer of a source neural network (N nodes) as an input for RF-R with randomly picked hyperparameters:
nTree ∈ [half of the number of the training samples,the number of training samples] and mTry ∈ [N/2,N]. TL setup 2 denotes the use of a
randomly chosen subset of all the hidden layers of the SPS best model as an input for RF-Py. Randomly selected hyperparameters were employed:
nTree = 200, the maximum number of features = square root of the number of descriptors. For descriptor types, rcdk-all denotes combining all
available fingerprints in rcdk (standard, extended, graph, hybridization, maccs, estate, pubchem, kr, circular); RDKit-5 denotes atom pairs and
topological torsions fingerprints, Morgan fingerprints (with and without feature-based), and basic fingerprints in RDKit; XenonPy denotes
compositional and RDF descriptors in XenonPy. The symbol * denotes cases that, after fingerprint entries showing zero in more than 90% of the
training instances were removed from a total of 11 106 bits, some of the remaining entries were randomly discarded until the number of remaining
entries reached at most 500. The symbol # denotes cases identical to those of *, except the remaining fingerprint entries after the filtering were
randomly dropped down to, at most, X entries, where X is randomly picked from a given range. Furthermore, % indicates that the 3600 models
consist of three sets of 1200 models that correspond to the compositional and RDF descriptors for stable structures and the compositional
descriptor for unstable structures, respectively.
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developments. Prediction−observation plots of all the current
best-performing models are given in Figure S1 (Supporting
Information).
Trained model objects in R or Python were archived to

RData and pickled objects, which included a set of metadata
required for model reuse and retrieval, e.g., model identifier,
author(s), description, property, class of materials, library to
calculate descriptors, descriptors, source database, and
identifiers of training samples in source database. For more
details, see the XenonPy Web site.23 XenonPy is an ever-
growing python library for materials informatics, including an
interface for retrieval of pretrained models and application of a
transfer learning module. The API allows users to work in the
R or Python environments using interactive or batch queries.
The pretrained models with the source data used in the

current release are summarized as follows.
Small Molecules. We used 12 properties of 133 805 small

organic molecules in the QM9 data set,24,25 such as the
HOMO−LUMO gap, dipole moment, and heat capacity at
constant volume (CV), which were calculated using density
functional theory (DFT) at the B3LYP/6-31G(2df,p) level of
quantum chemistry. In addition, the second data set was taken
from our previous work,26 constituting a set of the HOMO−
LUMO gaps and internal energies of 16 674 chemical species
in PubChem,27 which were calculated via DFT with structural
optimization performed at the B3LYP/6-31+G(d) level of
theory using the General Atomic and Molecular Electronic
Structure System (GAMESS).28,29 We also produced an
original data set of the solvation free energies of 1025 organic
compounds in water solution, as calculated from molecular
dynamics (MD) simulations using the Groningen Machine for
Chemical Simulations (GROMACS).30 The solvation free
energy was calculated from the MD trajectories using the
Energy Representation Module (ERmod).31 Other than those
sets, we used the melting temperatures of 28 645 chemical
structures contained in the Jean-Claude Bradley open melting
point data set32 and 7301 boiling points of over 40 000
structures incorporated in the Physical Properties (PHYS-
PROP) database.33,34 Neural networks having randomly
constructed architectures were trained separately on all data
sets using the MXNet package in R and PyTorch in Python. In
each training, we used a randomly chosen subset of the 11 106
dimensional binary descriptor that concatenated 9 different
fingerprints implemented in the rcdk library35 in R. For the
RDKit package36 in Python, models were trained for each of
the five fingerprints separately. See Table S1 in Supporting
Information for the fingerprint descriptors.
Polymers. In this release, narrowing the focus to

homopolymers, we explored mapping from the chemical
structures of constitutional repeating units to polymeric
properties using training data from two major polymeric
properties databases, PoLyInfo37 and Polymer Genome.38

PoLyInfo provides 17 001 observations of the glass transition
temperatures (Tg) for 5917 unique homopolymers and 12 374
observations of the melting temperatures (Tm) for 3234 unique
homopolymers. We also extracted 13 868 observations of the
density (ρ) of 1517 homopolymers, 121 observations of CP for
58 amorphous homopolymers, and 101 observations of the
thermal conductivity (λ) for 19 amorphous homopolymers
that correspond to room temperature (10−30◦C). Polymer
Genome presents a broad range of computational and
experimental properties of 853 polymers (bandgaps, diectric
constants, refractive indexes (n), Hildebrand solubility

parameters, atomization energies, Tg, and ρ). Pretrained
models were generated in the same way as those of small
molecules.

Inorganic Compounds. We generated pretrained models
of 10 properties (bandgap, formation energy, n, ρ, volume,
total magnetization, and so on) using 69 640 and 1056 records
from the Materials Project39 and Citrination databases
(id:152062),40 respectively. In addition, we used two data
sets taken from our previous studies that consist of
computationally calculated lattice thermal conductivity
(LTC) and the related properties called the scattering phase
space (SPS) for 45 and 320 inorganic crystals, respectively.41

For each task, two types of materials descriptors, referred to as
the compositional and structural descriptors, were generated
using XenonPy. The compositional descriptor described 290
features of the elemental compositions of the given materials.
The structural descriptor was composed of topological or
electronic features of a given crystal structure, such as the
partial radial distribution function (pRDF)42 and orbital field
matrix.43 XenonPy provided a simple-to-use interface for
generation of 20 kinds of structural descriptor with the aid of a
wrapper function to matminer.44 Most pretrained models in
the current library describe a given materials property as a
function of one or both of the compositional and structural
descriptors. We also registered few descriptor-free models
based on the crystal graph convolutional neural networks45

that were trained on the Materials Project database for
formation energy, Fermi energy, magnetiation, bandgap, total
energy per atom, volume, and density. In addition, the library
contains pretrained neural networks and random forests for
multiclass classification, which designates given chemical
compositions into one of the 226 space groups or 32 point
groups.

■ RESULTS
Hereafter, successful applications of the shotgun transfer
learning in four different scenarios will be described. The
primary objective is to demonstrate how we learn from little
data or how well pretrained off-the-shelf features work in the
task of extrapolative prediction.

Illustrative Example: Prediction of Polymeric Heat
Capacity. We first report a successful application that
illustrates the analytic workflow of the transfer learning and
some of its potential. The goal was to obtain a prediction
model that describes a thermophysical property of polymers,
that is, the specific heat capacity at constant pressure (CP), as a
function of chemical structures in constitutional repeat units.
Using a set of molecular fingerprinting algorithms in the rcdk
library, the chemical structure S of a monomer was translated
into a series of binary digits representing the presence or
absence of specific substructures in the given molecule. To be
specific, the nine fingerprint descriptors that include the
Extended-Connectivity Fingerprint (ECFP) fingerprint46 and
the MDL MACCS keys47 (see Table S1 in Supporting
Information) were concatenated to define an augmented
descriptor with the total number of elements equal to 11 106,
and its randomly chosen subset was used in each of the 1000
shotgun pretrained models. These features constituted a binary
vector ϕ(S) with length equal to around 400−600. The task
was to identify an underlying mapping CP = f(ϕ(S)) from ϕ(S)
to CP using given training instances on the structure−property
relationships. PoLyInfo provides experimental values of CP at
room temperature (10−30◦C) for only 58 amorphous
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homopolymers.37 In this study, multiple observations of the
same polymer were reduced to the average value that
characterizes its baseline CP. Figure 2a shows the prediction
accuracy of a directly learned model that was derived by
feeding the given data into the random forest algorithm. Five-
fold cross validation (CV) was performed on the 58 instances
to evaluate the mean absolute error (MAE), the maximum
absolute error (MaxAE), the root-mean-square error (RMSE),
and Pearson’s correlation coefficient (r) between the predicted
and observed values. It is apparent that the generalization
capability of the resulting model was significantly low (MAE =
0.043 cal/g◦C and r = 0.667). In particular, the model

exhibited large prediction errors (MaxAE = 0.229 cal/g °C) for
a few test polymers, such as those with a tiny monomer unit
containing halogen groups (e.g., “*C(Cl)C*” and “*C(F)-
(F)*”); this was because of the lack of data.
To increase the ML performance, we attempted to extract

features transferable to CP by solving a different but related
task. The QM9 data set contains specific heat capacities at
constant volume (CV) for 133 805 small organic molecules
composed of C, O, N, and F, calculated at the B3LYP/6-
31G(2df,p) level of quantum chemistry. We began by using a
shotgun approach to produce 1000 neural networks, which
were trained on 15000−30000 randomly chosen instances

Figure 2. Illustrative example of transfer learning for prediction of polymeric CP. (a) The left two panels show prediction performance of a directly
supervised random forest and the best transfer learning model using 58 instances of the polymeric CP under 5-fold CV. The predicted and
experimentally measured properties are shown on the horizontal and vertical axes, respectively, color-coded in shades of red (blue: fits to the
training data in the CV). The best transfer learning model is obtained from 1000 pretrained source models for the CV of small molecules, which had
randomly generated different networks. The transferred polymeric CP model exhibiting the minimum MAE value was identified through the same
5-fold CV. The right panel shows a plot of the MAE values for the 1000 pretrained models on the source task (the monomeric CV) and their
transferred models on the target task (the polymeric CP). (b) Same layout as (a), except the models were trained with the stratified group 6-fold
CV; all the polymers were divided into nonoverlapping six subgroups according to their compositional and structural features, and the CV was
looped with this grouping. (c) Heatmap display of neural descriptors acquired from CV and repurposed on CP. For each layer in the CV network, we
calculated the n × p descriptor matrices with the chemical structures given in the CP data set, where p is the number of neurons and n is the number
of samples on CP. In all the heatmaps, the n samples are sorted from top to bottom in increasing order of CP.
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representing the relationship between CV and the fingerprinted
chemical structures. Each model had a fully connected pyramid
network where the number of neurons monotonically
decreased from the input to the output layer, and the number
of hidden layers was randomly selected to be three or four. The
number of neurons in each layer was also randomly chosen
such that the cell size in the last hidden layers fell within the
range of 10−30. For each pretrained model, its subnetwork
other than the output layers, denoted by ϕCV

(S), was used as a
feature extractor, which was repurposed in the CP prediction
model (Figure 1). By feeding the CP training set into the
random forest algorithm with the randomized values of the
hyperparameters, e.g., the number of trees in the forest and the
number of randomly chosen features, respectively, we obtained
the model CP = f(ϕCV

(S)), which describes CP as a function of

the reduced representation ϕCV
(S) of S. We tested the

transferability of each of the 1000 pretrained models on a
trial-and-error basis and selected the best transferred model
yielded the minimum MAE through the 5-fold CV on the
foregoing CP training set. The prediction accuracy was greatly
improved, as the MAE reached 0.028 cal/g °C on the
validation data and the MaxAE was reduced to 0.097 cal/g °C
from that of the without-transfer model (Figure 2a). It is likely

that the pretraining step of transfer learning has successfully
extracted generic features from the QM9 data of small
molecules with F, thus improving the prediction of polymers
with a tiny monomer unit containing halogens. This achieve-
ment is quite satisfactory considering the limited amount of
training data and the use of highly simplified models
depending only on the chemical structures in the repeating
units. Notably, any other potential covariates, which could
greatly affect the polymeric CP, were ignored.
The underlying transferability between the monomer-level

CV and polymeric CP could be confirmed visually, as shown in
Figure 2c. The test polymers in the CP data set were fed into
the feature extractor learned from the monomer-level
computational CV. Some neurons exhibited a clear association
with the targeted CP, representing the underlying commonality
between the computationally and experimentally evaluated
thermophysical properties at the monomer and polymer levels.
One of the most prominent features of transfer learning lies

in the potential power of extrapolative prediction. We divided
the polymers into six subgroups using the K-means clustering
with the fingerprinted chemical structures. After six wrongly
grouped polymers were manually removed, the identified
groups were annotated according to their compositional and
structural features as hydrocarbon main chain polymers,

Figure 3. Transfer learning (TL) for λ of polymers using 19 observations. (a) The upper left plot shows 19 observed properties against predicted
values given by directly trained random forests. The other panels present the prediction performance of transferred random forests trained using
neural network features acquired from prelearning on CV (small molecules), and the viscosity, ρ, Tg, and Tm of polymers. The predicted and fitted
values in the 5-fold CV are colored orange and blue, respectively. (b) Scatter plot matrix of observed properties in PoLyInfo for Tg (°C), Tm (°C),
ρ (g/cm3), viscosity (η, dL/g) in log scale, CP (cal/g °C), and λ (W/mK). (c) Prediction performance of transferred random forests trained using
neural network features acquired from prelearning of the ionization energy (Eion), n, cohesive energy (Ecoh), Hildebrand solubility parameter (δ),
and electronic dielectric constant (ϵe) in Polymer Genome.
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phenols ethers, N containing aromatics, aliphatic esters,
aromatic esters, and diphenyl substituted metals. As shown
in Figure S2, between-group variability of the grouped
polymers was significantly large. With this grouping, we
performed a stratified group 6-fold CV: a group was treated as
a validation set and the remaining five groups as a training set
in the transfer learning. As expected, the prediction perform-
ance of both transferred and without-transfer models declined
from the conventional CV as the task became significantly
harder. However, as shown in Figure 2b, the MAE and MaxAE
for the transferred models over the six validation sets (MAE =
0.042 cal/g °C and MaxAE = 0.116 cal/g °C) were still
significantly lower than those of the without-transfer models
(MAE = 0.054 cal/g °C and MaxAE = 0.160 cal/g °C). In
general, the generalization capability of an ordinal ML model is
limited to a neighboring region of a given training data set, as
apparent for the case of the without-transfer models that
performed rather poorly when the underlying distribution
between training and test data was significantly dissimilar. This
observed fact can be interpreted as follows: the pretrained
model on the CV of small organic molecules successfully
acquired a feature extractor generally applicable to a broader
space of chemical structures than the one spanned by the
rather limited training instances of polymeric CP, because the
133 805 source data included training instances that are

relevant to the relationships regarding diverse chemical
structures with respect to the target task.
This illustrative example demonstrates the great potential of

transfer learning as a key driver to overcoming data scarcity
and suggests its potential applications in various tasks relating
to materials science. This example also reveals the prerequisite
for full exploitation of the potential benefits of transfer
learning, that is, a comprehensive set of pretrained models. In
this example, the empirical knowledge that the monomeric CV
is relevant to polymeric CP was already available. That is, the
heat capacity of polymers is known to have a downward bias
with respect to that of their monomeric states. However,
conventional scenarios may lack a theoretical basis and
empirical laws to determine the source properties related to
a novel task. Moreover, this example highlighted the
importance of using a diverse candidate set of pretrained
models. As shown in Figure 2a,b, significant variation in the
observed transferability from CV to CP was apparent for the
1000 pretrained models with different network architectures.
In most cases, a pretrained model showing the best prediction
in the source task does not always exhibit the best
transferability in the target task as seen in the lack of
correlations in the MAE values between the 1000 pretrained
models in the source task (monomeric CV) and the transferred
models in the target task (polymeric CP) (the right panels in
Figure 2a,b).

Figure 4. Extrapolation ability of transferred models for predicting λ. (a) Prediction of λ for three polymers that were newly synthesized in our
previous study48 (left: directly learned random forest, right: the best transferred model). (b, c) Chemical structures of the three new polymers and
the 19 training polymers used in the transfer learning.
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Thermal Conductivity of Organic Polymers: Learning
with Exceedingly Small Data Sets. PoLyInfo records
multiple observations of λ at room temperature for 19 unique
amorphous homopolymers, after the removal of unreliable data
based on manual inspection. The values of λ varied
considerably, even for the same polymer, as shown in Wu et
al.48 The observed within-polymer fluctuations would arise
from unrecorded processing operations, molecular orienta-
tions, and other higher-order polymeric structures, which are
known to be more influential than the chemical structures of
monomers. For each polymer, the replicated observed
properties were averaged to define a baseline level of λ. Both
the extreme scarcity of data and the existence of unmodeled
factors with considerable influence on the output property
greatly increased the difficulty of obtaining accurate prediction
models. As expected, none of the directly trained models
yielded successful prediction of λ, as shown in Figure 3a.
The procedure of transfer learning was the same as for the

polymeric CP. We reused the feature extractors of all the
pretrained neural networks for Tg, Tm, ρ, and the viscosity (η),
which originated from PoLyInfo. In addition, we used the 1000
models of the computational CV of small organic molecules,
which were trained on the QM9 data set. These pretrained
models were individually repurposed for the training of
random forests with only the 19 instances of λ, with the top
layers being removed and swapped with the random forests.
The generalization capabilities of the transferred models were
measured in terms of the MAE, RMSE, MaxAE, and r, between
the observed and predicted values through the 5-fold CV
looped within the 19 instances. As shown in Figure 3a, the best
transferable models determined through the CV, which were
derived from any of the five source properties, yielded
satisfactory performance on the validation sets. Rather
miraculously, the transfer learning was successful with such
an extremely small data set, and possibly even outperformed

human capability for this task, as explained below. In previous
works, ρ has been observed to have a linear relationship with
λ.49 Some studies have also suggested a rule of thumb relating
Tg to λ.50,51 However, none of those source properties
exhibited clear dependency to λ in the observation data, as
shown in Figure 3b which displays a scatter plot matrix of the
observed properties of Tg, Tm, ρ, η, CP, and λ in PoLyInfo. It is
apparent that the pretrained neural networks successfully
acquired nontrivial commonalities transferable across these
physical properties; this performance may be far beyond the
human perception achievable through simple observation of
the joint distribution. Furthermore, as shown in Figure 3c,
which summarizes the prediction results of transferred models
originating from the Polymer Genome data sets, physically
uninterpretable source properties such as n, the dielectric
constant, and the polymer solubility have almost comparable
levels of transferability to the five properties in PoLyInfo.
We investigated the extrapolative power of the best-

performing transferred model that was originated from a
source model on the computational CV of small organic
molecules. In the previous work,48 we presented newly
synthesized three kinds of polyamide containing mesogen
groups, as depicted in Figure 4. While their chemical structures
were considerably different from the 19 training instances as
no mesogenic polyamides were included in the training set as
displayed in Figure 4, the predicted λ of the three synthesized
polymers, which were transferred from the pretrained model
on the computational CV, were highly consistent with the
experimental observations. As expected, the without-transfer
model did not acquire such predictability.

Thermal Conductivity of Inorganic Crystals. Explora-
tion of crystalline materials with ultrahigh λ was of interest in
our previous study, which aimed to facilitate efficient thermal
management of electronic and optical devices. In recent
decades, remarkable progress has been made with regard to

Figure 5. Transfer learning for LTC of inorganic compounds. (a) Scatter plot of data on SPS and LTC. (b) Prediction performance of model
exhibiting best transferability among 1000 pretrained models. The validation and training results in the 10-fold CV are colored orange and blue,
respectively. (c) Histogram showing LTC distributions for 45 training samples and 14 crystals having ultrahigh LTC identified by HTS. In the
prediction-observation plot in the inset, the orange dots and blue diamonds denote the predicted values of the transferred model and of a neural
network directly trained using the 45 samples, respectively, to demonstrate the extrapolation prediction performance.
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first-principles calculation of the LTC using interatomic force
constants (IFCs) obtained from DFT.52,53 However, perform-
ing first-principles calculations on tens of thousands of crystal
compounds would be extremely time-consuming. Therefore,
we selected the SPS as a proxy property for HTS, which is
related to the phonon scattering rate. In theoretical
speculation, the SPS should negatively correlate with the
LTC. However, a rather weak negative correlation was
observed, as shown in Figure 5a (r = −0.466 with a p-value
of 0.00126).
For each of the 1000 neural networks trained on the 320

instances of SPS, all neurons in the top hidden layer were
pipelined to a random forest regression that related the 290
compositional descriptors of XenonPy to the LTC. The
restructured model was then trained on the 45 instances of
LTC. For the 10-fold CV looped within the 45 training
instances, the best-performing model produced predicted
values that were highly consistent with the observed LTC, as
shown in Figure 5b. As in the previous examples for polymers,
the effectiveness of transfer learning in overcoming data
scarcity was confirmed experimentally.
An alternative method of model transfer is to simply convert

the predicted SPS of a pretrained model into the LTC along a
straight line drawn down the middle of the SPS and LTC joint
distribution, as shown in Figure 5a. However, the best
prediction accuracy of such a simple calibration may be
significantly lower than that of the best transferable model,
because of the observed weak correlation between the source
and target properties. This kind of calibration is essentially
equivalent to the use of a pretrained neural network having a
single neuron in the top hidden layer; the one-dimensional
featurizer is mapped to the LTC through a linear function
fitted on the given SPS and LTC data in Figure 5a. Transfer

learning is considered to be a generalization of this approach,
providing a mean of overcoming the limitation by embodying
the underlying features learned from the SPS into the higher-
dimensional feature space.
In our previous study, HTS was performed with a

transferred model over about 60 000 candidate compounds
selected from the Materials Project database. We identified 14
single crystals with LTC values that reached 115−3371 W/mK
at room temperature.41 The realized LTCs resided in an
extrapolative region, which is an exceedingly far tail of the
training data distribution in the 1−370 W/mK range. Figure 5c
shows the LTCs of the 14 crystals predicted by the transferred
model and a model directly trained using the 45 data elements.
Surprisingly, the transferred model successfully achieved
extrapolative prediction performance. In contrast, there was a
substantial difference between the observed and predicted
values for the without-transfer model. In general, the
generalization capability of an ordinal ML technique is limited
to a neighboring region of the given training data set, as
apparent for the case of the without-transfer model. This
observed fact can be interpreted as follows: the pretrained SPS
model can acquire a feature extractor generally applicable to a
broader input space than that spanned by the given 45 training
data for the LTC, because the 320 source data may contain
training instances that are relevant to structure−property
relationships regarding ultrahigh λ.

Transferability across Organic and Inorganic Materi-
als. Finally, we aimed to reuse a model pretrained for
inorganic materials in a new task concerning organic polymers.
The target property for prediction was n (refractive index).
XenonPy was used to calculate 290 features characterizing the
compositional features of both inorganic compounds and
polymers, with any other structural features being ignored

Figure 6. Transfer learning across organic and inorganic materials. (a) Heatmap display of 290 compositional descriptors for 853 organic polymers
(upper half) and 1056 inorganic compounds (lower half). The upper and lower half samples are separately sorted from top to bottom by increasing
order n of organic polymers and inorganic compounds, respectively. (b) Projection of the 290 compositional descriptors onto two-dimensional
space through t-SNE. The organic polymer and inorganic compound samples are colored red and blue, respectively. (c) Transfer learning
performance from inorganic compounds to organic polymers. (Left) Prediction performance for n of organic polymers using model trained on
inorganic compound data. (Right) Prediction results of best transferred model.
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during model building. As shown in Figure 6a, these two data
sets exhibited entirely different structure−property relation-
ships, as no common pattern was observed for each of the
features (at least from a visual comparison of the polymer and
inorganic data sets). Indeed, as shown in Figure 6b, which
illustrates the descriptor vectors projected onto a two-
dimensional subspace using t-distributed stochastic neighbor
embedding (t-SNE),54 it was confirmed that the two data sets
were distributed at quite distant regions in the feature space.
Before proceeding to transfer learning, we tested the direct

prediction of the n values of the 853 polymers in the Polymer
Genome database using the best-performing model pretrained
for inorganic compounds in the current library; this model was
trained on 1056 data sets. The MAE and r were 0.833 and
0.541, respectively. As shown in Figure 6c, the predicted n
values of the polymers were significantly overestimated,
obviously indicating a striking difference between organic
and inorganic chemistry. On the other hand, the random
forests trained on the polymeric property data using the
transferred features yielded a reasonably precise prediction of
n, with MAE and r values of 0.063 and 0.832, respectively, for
10-fold validation looped within the 853 samples.
This nontrivial transferability that breaks the barrier between

organic and inorganic chemistry has been presented in this
work in order to highlight a different transfer learning
application scenario. By exhaustively investigating feasible
transfers based on a comprehensive set of pretrained models
and training instances, we can draw a directed graph that
represents the physical dependence taxonomy of various
properties across different materials. However, the machine-
derived transferability between different material properties is
not generally interpretable, and this lack of transparency makes
it difficult to gain insights into explainable physicochemical
mechanisms, which may be the primary interest of materials
science researchers in this context. Recently, there has been
increasing activity toward the creation of more transparent and
interpretable ML systems, mainly inspired by legal or even
ethical requirements, along with growing demand for
application of ML to science.55 In the near future, emerging
technology for interpretable ML will facilitate scientific
understanding behind nontrivial transferability autonomously
identified by ML.
Safety. No unexpected or unusually high safety hazards

were encountered.

■ CONCLUSIONS AND OUTLOOK
We have demonstrated some outstanding successes in transfer
learning, along with different application scenarios in materials
science. While transfer learning is becoming increasingly
popular in various fields of ML, the widespread use of this
promising method in materials science has not yet been
achieved. The limited availability of openly accessible big data
will likely continue in the near future in this community
because of the lack of incentives toward data sharing. This
problem arises because of the conflicting goals of the diverse
stakeholders in academia, industry, and public and govern-
mental organizations. Therefore, transfer learning will be
indispensable to the success of ML-centric workflows in
materials research.
To boost the power of transfer learning, we have developed

an open access library of pretrained models, XenonPy.MDL,
which covers a wide variety of materials properties for small
organic molecules, polymers, and inorganic compounds. This

library is ever-growing. For this first release, the focus was
narrowed to specific types of modeling. For example, we used
only common molecular fingerprints to describe the structures
of organic molecules. However, in recent years, more advanced
representation techniques have been developed in related ML
research fields, such as graph convolutional neural net-
works56−58 and the neural fingerprinting algorithm59 (a
generalized version of the ECFP). For inorganic compounds,
any higher-level features of these materials, such as their
temperature dependency and physical, electronic, and
magnetic features, have been fully ignored. In addition, only
relatively shallow, pyramid-shaped neural networks have been
employed in shotgun model production. Use of more diverse
types of pretrained models offers more versatility and
multidimensionality for material structure representation,
which will be the key to a successful transfer learning.
To date, one missing component of traditional ML has been

the concept of memory. The process of adapting pretrained
models to a novel task seems similar to the scenario where a
highly experienced expert implicitly utilizes knowledge or
memory acquired in the past to perform a reasonable inference
for a considerably less experienced task. Notably, it has been
experimentally proven that transfer learning can often increase
ML prediction performance to remarkably high levels, even for
extremely small data sets. More interestingly, feasible model
transitions across different properties and even cross-material
adaptations have successfully revealed a dozen nontrivial
connections between small molecules and polymers, organic
and inorganic chemistry, and properties with unobvious
dependency in terms of both observed data and physical
theory. Almost all tasks in materials science are more or less
connected, with no materials properties being completely
independent. This trait facilitates application of transfer
learning to this area. Future developments in ML are expected
to further expand the applicability and usefulness of transfer
learning to materials science.
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